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ABSTRACT 

An analytical solution is presented for the case of a stratified, tidally forced lagoon. This so- 
lution, especially its energetics, is useful for the validation of numerical shallow water models 
under stratified, tidally forced conditions. The utility of the analytical solution for validation 
is demonstrated for a simple finite difference numerical model. A comparison is presented of 
the energetics of the numerical and analytical solutions in terms of the convergence of model 
results to the analytical solution with increasing spa.tial and temporal resolution. 

INTRODUCTION 

Validation of coastal and estuarine hydrodynamic models suffers from a paucity of multi- 
dimensional analytical solutions that include both barotropic and baroclinic effects. The 
purpose of the present study is to provide one such analytical solution and its energetics. 
It is a two-c1imensiona.l (length, depth), time-dependent solution of both the batotropic and 
baroclinic mocles of a tidally forced lagoon. It extends the work of Eliason and Bourgeois 
(1997, hereinafter EB97) to the forced case. 

In addition to presenting the analytical solution for a stratified tidal lagoon, the vali- 
dation of a simple finite difference numerical model is presented as an example. An open 
boundary condition (OBC) 1 1as to be used for the tidally forced end of the lagoon. The treat- 
ment of open boundary conditions (OBCs) has been given much attention in the literature. 
In particular, the recent stucly by Shulman et al. (1999, hereinafter SLM99) summarizes 
the literature on the subject with regard to problems of geophysical interest. The present 
analytical solution will be shown to validate a non-optimized version of the OBC given by 
SLM99. 

GOVERNING EQUATIONS 

As for the unforced case of seiche motions considered by EB97, if one uses the Boussi- 
nesq, hydrostatic, and incompressible assumptions, and neglects the nonlinear terms in the 
momentum equation and the horizontal advection of density in the density equation, the 
equat,ions of motion that are applicable to tidally forced motion in a Cartesian coordinate, 
two-dimensional (length, depth) channel can be simplified to: 

(1) 

(2) 
(3) 
(4) 
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Here u and w are velocity componenfs in the respective z (length) and z (depth, positive 
upward) directions; t is time; g is the Earth’s gravitational acceleration; P is the hydrostatic 
pressure; and p and po are the waier density and reference water density, respectively. 

Barotropic and Baroclinic Modes 

Following EB97, we decompose Eqs. 1-4 into depth-averaged and depth-variable components, 
which correspond to the barotropic and baroclinic modes, respectively. The pressure, P, is 
first decomposed into a surface pressure, pogq (where 7 is the perturbation of the surface 
from mean sea level) and an internal pressure, p. The surface pressure corresponds to 
the barotropic mode, and the internal pressure corresponds to the baroclinic mode. The 
barotropic mode equations are then: 

87 g+gz = 0 (5) 27 z+Lg = 0 (6) 
g+g = 0 (7) 

where u and G are the barotropic horizontal and vertical speeds, respectively; and H is the 
bottom depth. 

The corresponding baroclinic equations, for which the density aclvection term has been lin- 
earized, are (EB97): 

1 dp’ g+-- = 0 
PO ax 

dW’ 
g+z zz 0 

dP’ 
z + p’g = 0 

dP' 2% 
Rt+wY& = 0 

(8) 

(9) 

(10) 

(11) 

where u’ and w’ are the baroclinic horizontal and vertical speeds. The perturbation density, 
p’, is a perturbation about a linear background vertical profile of density, p = po - ZAP. 
The internal pressure, p, is correpondingly decomposed into a constant background vertical 
profile p, about which the internal perturbation pressure, p’, is perturbed, subject to the 
constraint that sfl, p’ dz = 0. 
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Boundary Conditions : 

For a tidal channel the boundary conditions for the barotropic equations (5-7) are 

u=o at 2 = 0, X; 
7=7jTcoswot atx=O,X; 
w = a?&% at z = 0, and 
w=o at z = -H, 

where x = 0 to X represents one tidal wavelength, X = cOTt with co the gravity wave speed 
2 

CO = gH and T the tidal period; VT is the tidal amplitude and w. is the tidal frequency, 
27r/T; z = 0 is at mean sea level and the flat bottom is at z = -H. 

The tidal channel boundary conditions for the baroclinic equations (8-11) are 

u’ = 0 at x = 0, X; 
w’ = 0 at z = -H, 0; and 
p’ = 0 at z = -H, 0. 

ANALYTICAL SOLUTION 

The barotropic equations (5-7), subject to the tidal channel boundary conditions, are solved 
by: 

COTT fj III ~ 
H 

sin kx sin wet 

where k = 27r/X is the tidal wavenumber. 

The baroclinic set of equations can be combined into one equation for the internal pressure 
perturbation, pLZlt = -N2pL5, where N is the constant background Brunt-V&ala frequency, 
iv2 = -(g/po)dp/f%. A candidate solution is then p’ = P7,2 cos kx cos(mrz/H) cos wt, 
where P, is the amplitude of the internal pressure perturbation of the mth vertical mode. 
For this solution to be valid, w is restricted to the set of discrete eigenfrequencies w, = 
kNH/(nz~), m = 1,2,. . . . A complete solution to the baroclinic set of equations (Eq. S-11), 
with the tidal channel boundary conditions, is then: 

u’ = 
m7r.z 

u, sin kx cos - 
H 

sin w,t 

kHu, w’ = -~ mnz 
cos kx sin - 

H 
sin w,t 

m7r 
p’ = 

mnz 
P, cos kx cos - 

H 
cos w, t 

mnP, p’ = ~ m7r.z 

gH 
cos kx sin ___ 

H 
cos w, t 

(15) 

(16) 

(17) 

(18) 
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where u, = ~n~%/(poNH) is the amplitude of the lnth mode baroclinic horizontal speed. 

Energetics 

The energetics analysis to be presented here differs from that given by EB97 because of 
the differences which arise from the fact that the present system is for a forced versus an 
un-forced system. Because of the forcing the perturbation energy fluxes are treated differ- 
ently at the boundaries than in EB97. The tidal channel solutions presented above are for 
a periodic channel. This solution can be applied to the case of a tidal lagoon by considering 
the nodal point at x = 0 to be instead the closed end of the lagoon. The mouth of the 
lagoon at x = L < X is forced by the tide. It is this tidal forcing that gives rise to non-zero 
perturbation energy fluxes at the mouth of the lagoon that distinguishes energetics analysis 
of the present study from that presented in EB97. 

The beginning of the energetics analysis, the total perturbation energy balance equation 
for the barotropic mode, is the same as in EB97; that is, 

di? ~ 
dt+F(x=O,t)+F(x=L,t) = 0 

where i? is the total barotropic perturbation energy per unit length, and p(x = 0, t) and 
F(x = L, t) are the barotropic perturbation energy fluxes at the ends of the lagoon. ,!? is 
composed of the barotropic l&etic and available potential perturbation energies, KE and 
APE respectively: 

E = 
L 1 J( 0 

pHii’ + $oyl7’ dx 
> PO> 

= KE + APE. 

As in the closed basin, unforced case considered by EB97, the barotropic perturbation 
energy flux F(x, t) = pogHiiq is zero at the closed end of the lagoon clue to the boundary 
conditions. In contrast, F is not necessa.rily zero at the mouth of the tidal lagoon at x = L, 
because it represents the barotropic perturbation energy flux clue to the tidal forcing. By 
applying the barotropic solution for the tidal channel at x = L, the barotropic perturbation 
energy flux at the mouth of the tidal lagoon is found to be 

F(x = L, t) = pogT” sin 2kL sin 2wot, 

which is balanced by the time rate of change of the sum of 

li’E= *(kL - isinZkL)sin”& 

(21) 

(22) 
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and 

APE = sin ~/CL) cos2 wet. 

The total barotropic perturbation energy for the tidal lagoon is thus 

jq = Po9& 
-&kL + ; sin 2kL cos 2wot). 

(23) 

As for the barotropic mode, the total perturbation energy balance equation for the baro- 
clinic mode as given by EB97 pertains here as well: 

dE’ 
--g + F’(x = 0,t) + F’(x = L,t) + F’(Z = -Il,t) + F’(Z = 0,t) = 0, (25) 

where E’ is the total baroclinic perturbation energy per unit length 

E’= ’ L1 J J( 1 g2 
-H o 

ZPOU'" + 1poN2p'2 dx dz (26) 

= ICE’ + APE’, 

with ICE’ the kinetic and APE’ the available potential baroclinic perturbation energies, and 
the F’ are the perturbation energy fluxes through the ends (J!, u’p’ dz at z = 0, L) and top 
and bottom (J$ w’p’dz at z = 0, -H) of the lagoon. 

The boundary conditions for the baroclinic mode of the tidal lagoon make all of the 
baroclinic perturbation energy fluxes zero except at the mouth of the lagoon, just as for the 
bardtropic mode. The baroclinic perturbation energy flux at the mouth of the lagoon can 
be found from the tidal channel solution to be 

F’(x III I/$) zz .,, 
SpoN sin 2kL sin 2w, t. 

The kinetic and available potential baroclinic perturbation energies which balance this baro- 
clinic perturbation energy flux through their time rate of change are 

ICE’ = e(kL - 1 sin 2kL) sin”w,t 
2 

and 

APE’ = E!$(l;L + f sin 2kL) 608~ w,t. (29) 
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The total baroclinic perturbation energy is thus 

sin2kLcos2w,t). 

In addition to the integral quantities such as E and E’ being useful as diagnostics for the 
numerical solution of tidal lagoons, construction of the energy budget of such a numerical 
model and comparison with the above analytical solutions is also helpful to ensure that the 
numerical method only changes the total energy by the influence of the perturbation energy 
flux at the mouth of the lagoon. Such comparisons with the given analytical solutions are 
particularly useful for the validation of numerical models of systems like tidal lagoons for 
which an open boundary condition must be employed. The utility of such a comparison will 
be demonstrated in the next section. 

NUMERICAL MODEL 

The simple finite difference numerical scheme to be employed here is basically that of EB97, 
except that the present scheme includes open boundary conditions (OBCs) at the mouth of 
the tidal lagoon. The other difference from EB97 is that both the initial condition and the 
first time-step of the numerical model are taken from the analytical solution, rather than 
obtaining the first time-step -from an explict step. 

The OBCs employed in the present study are those of SIJM99, except that the present 
study does not use their optimized form. The OBCs of the present study have the general 
form 

UC, -p/p0 = UfCm - Pf/PO, (31) 

wherec,,m=O,l,... are the characteristic velocities of each mode, c,~ = gH,, with m = 0 
corresponding to the barotropic mode with Ho = H, and modes m = 1,2, . . . corresponding 
to baroclinic modes with H, = H(pH - po)/( rr~~~~po) the equivalent depths. The separation 
of the general form of the OBC into barotropic and baroclinic modes is done in an analogous 
manner to that clone for the governing equations (l-4). D t 1 e ai s of the exact form of the 
resulting barotropic and baroclinic OBCs are given in the next two subsections. 

Barotropic Mode 

The barotropic mode of the numerical model is solved semi-implicitly as in EB97 except that 
u is solved for instead of the transport per unit width used in EB97. Although the spatial 
and temporal indexing of the finite differences on the Arakawa ‘C’ grid and the solution of 
the resulting tridiagonal system is that of EB97, the OBC at the lagoon’s mouth changes 
the computation of the coefficients for the tridiagonal solution at x = L, i = I + 1. The 
necessary changes are given in the Appendix. 
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The barotropic OBC can be obtained from Eq. 31 with m = 0 and by reca.lling that the 
surface pressure is q/(pog). It is a non-optimized version of the one given by SLM99 for the 
barotropic mode: 

uH - co7 = u,H - coqf, (32) 

where Uf and qf are the tidally forced (incoming) barotropic velocity and surface elevation 
at the mouth of the lagoon. In the present study they will be specifiecl from the tidal chamlel 
solution evaluated at x = L. 

The unforced version of Eq. 32, i.e., the condition that iiH = co7 at the open boundary, 
allows waves generated interior to the computational domain to be propagated out along 
their characteristic. This condition is analogous to propagating outgoing waves out of the 
open boundary along their characteristic Riemann invariant in gas dynamics, and may be 
derived using the l~ethocl of Thompson (1987). In Eq. 32 the outgoing wa,ves which are 
propagating along their characteristic are balanced by the tidally forced wave which is prop- 
agating inward along its characteristic. It has long been used as an OBC for gravity waves 
following Reid and Bodine (1968), who used Eq. 32 except with Uf = 0. SLM99 cite Flather 
(1976) as having introduced the tif term into Eq. 32. 

Satisfying Eq. 32 at x = L requires a modification to the standard Tl1oma.s algorithm 
(Thomas, 1949) f ‘or solving the tricliagonal system of equations that arises from finite cliffer- 
encing Eqs. 5-6. This modification is given in the Appendix. 

Baroclinic Mode 

The baroclinic mode finite difference equations are solved by the leapfrog method as given by 
EB97. The only difference in the numerical solution of the baroclinic mode equations of the 
pres.ent study from that of EB97 is that their free slip boundary condition at x = L required 
u’(J: = L) = 0. In contrast, the tidal forcing at x = L in the present study requires that 
an OBC be imposed upon u’. The OBC imposed in this study upon u/(x = L), which is a 
non-optimized version of the baroclinic one from SLM99, may be derived from the baroclinic 
component of Eq. 31: 

I u cm - P’/Po = +k - P;lPo, (33) 

which SLM99 point out “... can be interpreted as a special linearization of the Bernoulli equa- 
tion for each baroclinic mode.” In the optimization form of SLM99 the -c, are Lagrangian 
mulipliers, of which the average is the group velocity of the mth mode. In the present 
non-optimized version the c, are the characteristic velocities of each mode, ck = gH,. 

Application 

As in EB97, the numerical model is applied to East Lagoon, a tidal lagoon in Galve- 
ston, Texas (Fig. 1). East Lagoon is narrow (maximum cross-channel width 320m, length 
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L = 2 km) and shallow (maximum of H = 5 m in depth). The closed end of the lagoon 
has a summertime stratification that can vary from p. = 1021 kg me3 at the surface to 
PH = 1023kgm -’ at the bottom. “Tidal forcing at the open end of the lagoon is primarily 
clue to the ii/r, tide (T = 12.42 hours). Using East Lagoon’s maximum summertime stratifi- 
cation, the period due to the first baroclinic mode is T' = 36.7days. 

The base run of the numerical model was clone with a a grid size of 12S2 density points, 
resulting in a spatial resolution of an: = 15.625m and AZ = 3.90625cm. The duration of 
this run was T', which will be referred to as a “long” run. A time-step of At = T'/4200000 FZ 
0.7556s was used to ensure that the accuracy requirement of the barotropic mode’s tridiag- 
onal solve was met. The accuracy requirement is that> jbj 1 5 jaj 1 + Icj 1, where the 1 bj 1 are 
the diagonal elements, and the (ujl and Icj( are the off-diagonal elements. 

To determine the effects of using less resolution, five additional long runs were also 
made, as summarized in Table 1. Also, one “short” run was clone at the 12S2 grid size using 
At = T/GO000 = 0.7452s to investigate the accura,cy of the mmlerical model’s solution of 
the barotropic mode. As shown in Table 1, the time-steps were varied with spatial resolution 
to keep the Courant number constant. 

Table 1: Grid sizes (number of density points), their corresponding grid interval sizes, and 
time-steps for the six ruiis that were clone to test the effects of cha,nging resolution. 

Grid ax (m) AZ (cm) at (4 

12s2 15.625 3.90625 0.7556532 
642 31.25 7.8125 1.5113064 
322 62.5 15.625 3.0226128 
162 125 31.25 6.0452256 
S2 250 62.5 12.0904512 
42 500 125 24.1809024 

As in EB97, the energetics of the numerical results are compared to the energetics of the 
analytical solution by computing the root mean square error (RMSE). In contrast to EB97, 
rather than using the index of agreement (Wilmott, 19Sl), the percent disagreement, %cl, is 
used for the comparison: 

where A, are the analytical energetics (e.g., APE), IV, are the numerical energetics, AL = 
A,- < A >, and NA = N,-- < A >, with < A > being the mean of the analytical energetics. 
Values of %d which are close to 0 indicate that the model results agree quite well with the 
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Figure 1: Geographical location of East Lagoon on Galveston Island, Texas (after Livingston, 
1981). 
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Figure 2: Barotropic energetlcs of analytical (solid bl ue line) and 12X’ grid numerical (red 
circles) solutions during one period of the M2 tide: (a) available potential energy (:3t-‘E:). in 
kilojoules/meter; and (b) kinetic energy (m), in Joules/met.er. 

analytical solution, and values of Y&I which are close to 100 indicate poor agreement of thr, 
model results with t,he analytical solution. 

RESULTS 
Visually. the comparison of the numerical t,o the analytical cnergetics for both the .\I2 tidal 
period of the harotropic mode (Fig. 2) and for one period of the first baroclinic mode (l’ig. :3) 
indicates excellent agreement between t,hc energetics of the numerical xsults and t how of 
t,he analytical solution. 

The results of varying the spatial resolution of the numerical model. as summ~rizcd ill 
Table 2 and Figs. 1-5, indicate rapid convergence to the analytical solution wit.h increasing 
resolution. Both KMSE and Y0d decrease exponentially with incwasing resolut,ioll for both 
thr barotropic (Fig. ,l) and haroclinic (Fig. .5) modes. 
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Figure 3: As for Fig. 2, except for baroclinic mergetics during one period of the first l~a~orli~~~- 
mode: (c) available potential energy (APE’). in kilojoulrs/rneter: and (d) kinetic rrwg,v 
(Ii,!?). in Joules/meter. 
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The low RMSE and %cZ results for APE indicate that the numerical model results for 17 
agree better with the analytical reiults than those for u in the barotropic mode. Because the 
means over their corresponding period of the energetics of both the barotropic and baroclinic 
modes are very close (e.g., < APE >z< APE’ >= 25 rmk J), their RMSE values may be 
compared. The fact that the barotropic mode results from the numerical model have lower 
RMSE and %cl than the baroclinic results suggests that the barotropic results are more ac- 
curate than those of the baroclinic mode.Possible reasons for this disparity will be given in 
the Discussion section. 

DISCUSSION 

One possible reason for the disparity in the accuracy of the numerical model results from the 
basotropic versus basoclinic mode a.rises from t,he fa.ct, tha,t the OBCs used in this stucly are 
local; i.e., dependent on the solution of the governing equations near the boundary (SLM99). 
As noted by SLM99, a local OBC in a primitive equation hydrostatic moclel such as that of 
the present study, “. . . is an ill-posed problem in that it is difficult to prove that a unique 
solution exists that is continuously dependent on boundary values.” The use of the semi- 
implicit method for the barotropic mode propagates information from the open bounda.ry 
ba,ck into the interior solution in the I~acli-substitution portion 01 the T1loma.s a.lgorithm, 
thus ensuring that the interior solution of the barotropic mode depends continuously on the 
boundary values. In contrast, the leapfrog solution method for the baroclinic mode does not 
allow for information propagation back into the interior from the open boundary. 

Another possibility for the accuracy mismatch between the results of the barotropic 
and baroclinic modes of the numerical model also stems from the use of the semi-implicit 
method for the barotropic mode versus the leapfrog method for the baroclinic mode. For the 
barotropic OBC (Eq. 32), use of the semi-implicit method allows both 7 and u to be available 
at the n + 1 time-level for use in the OBC (Eq. 36 in the Appendix). In contrast, for the 
baroclinic OBC (Eq. 33) only u’ is available at the n + 1 time-level using the leapfrog method, 
so p’ for the OBC had to come from time-level n. Because At was clecreasecl proportionally 
as resolution was increased (to keep the Courant number constant), the use of p’” rather 
than p”‘+l for the OBC became a better and better approximation with increased spatial 
resolution, thereby contributing to the observed convergence. Convergence of the numerical 
baroclinic mode results to the analytical solution may thus be improved by an algorithm 
which allows both ulnfl and p In+’ to be present at that point in the solution when both are 
necessary for use in the ,u’ OBC. 

SUMMARY AND CONCLUSIONS 

An analytical solution has been presented for the case of a stratified, tidally forced lagoon. 
The analytical solution is useful for the validation of numerical shallow water models un- 
der stratified conditions, especially the energetics of the solution. A simple finite-difference 
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Table 2: Root mean square error (RMSE) and percent disagreement, %d, for the comparison 
of the model energetics results to the analytical solution for six different grid resolutions. 
The percent disagreement for APE has been multiplied by 10’ for comparison purposes. 
* %d for APE from the 1282 case == 0 (to 16 digits). 

Grid Quantity RMSE (J/m) Yocl 

1282 

64” 

322 

162 

8” 

42 

APE 1.25 x 1O-4 o.oo* 
KE 9.67 x 1O-2 1.02 x 1o-2 

APE’ 1.21 x lo2 4.57 x 1o-3 
ICE’ 9.86 x lo-” 1.02 x lo-” 

APE 5.02 x lo-” 7.77 x 1o-5 
Ii-E 1.94 x 10-l 4.06 x lo-’ 

APE’ 2.42 x lo2 1.83 x 1O-2 
ICE’ 1.98 x 1.0-l 4.06 x lo-” 

APE 2.01 x 1o-3 1.29 x 1o-3 
ICE 3.90 x :10-l 1.60 x 10-l 

APE’ 4.81 x IO2 7.34 x 1o-2 
ICE’ 3.97 x 10-l 1.60 x 10-l 

APE 8.03 x 1O-3 2.06 x 1O-2 
Ir’E 7.87 x 10-l 6.23 x 10-l 

APE’ 9.55 x lo2 3.00 x 10-l 
ICE’ 8.03 x 10-l 6.23 x 10-l 

APE 3.21 x lo-” 3.29 x 10-l 
m 1.61 2.34 

APE’ 1.91 x lo3 1.30 
ICE’ 1.64 2.34 

APE 1.28 x 10-l 5.26 
KE 3.34 8.07 

APE’ 3.94 x lo3 6.60 
ICE’ 3.41 8.07 
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Figure ?: RMS error (RMSE. solid red line) and percent disagreement (dashed blue line) of 
the barotropic energetics of the numerical result,s with those of the analytical solrltion for 
several grid sizes (as number of density points in the r-direction: (a) available pot,cntial CT- 
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.4PE has bcrn multiplied by 10”. 

15 



32 64 96 

Number of x points 

128 

6.3 F 

: 

k 
4.2 o 

c 
2.1 E 

b 
a 

0.0 

Figuw 5: As for Fig. 4, except hamclinic rather than barotropic: (c) availablr potential 
cnrrgy (APE’), and (d) kinetic energy (ICE’). Sate that RMSE for APE is in kilo- 
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model of the governing eyuations has been presented as an example of how the analytical 
solution can be used for such validation purposes. In particular, the comparison of the ana- 
lytical and numerical solutions also of necessity involved the validation of the OBC employed 
by the numerical model. 

The energetics results of the numerical model were shown to converge to those of the 
analytical model with increasing spatial resolution. This convergence validates both the nu- 
merical scheme employed (EB97) and also the OBC ( an un-optimized version of SLM99). 
The slight mis-match between the convergence rates of the numerical results of the barotropic 
versus baroclinic modes to the analytical solution may be due either to the local nature of 
the leapfrog scheme of the baroclinic algorithm versus the global nature of the semi-implicit 
barotropic algorithm, or to the necessity of using a time-lagged pressure in the baroclinic 
OBC. 

In conclusion, the analytical solution presented herein is a useful validation tool for 
numerica.l sha,llow water models in \vhich both stratilication and tidal forciug are importaiit. 
Analytical solutions such as the present one sl~o~~lcl be used to valid&e numerical shallow 
water models for such simplified cases a,s this before such models are applied to the more 
realistic geophysical situations found in bays, harbors, and semi-enclosed seas. 
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APPENDIX 

A modification to the standard Thomas algorithm for solving the tridiagonal system of equa- 
tions in the barotropic mode arises from the need to satisfy the OBC (Eq. 32) at 2 = L. 
The required modification involves computing the value of the solution vector at i = I + 1 
such that it is consistent with both the OBC and the interior solution. The details of how 
this is done are presented in this appendix. 

The Thomas algorithm first transforms the tridiagonal system of equa,tions int#o one tha,t 
is upper bicliagonal, 

where Gzi is the solution vector, and E2.i and Fzi are the bidiagonal coefficients. In the 
forward sweep the &; and F,, are computed from the tricliagonal coefficients. The bouncla.ry 
condition at i = I + 1 is then used to specify G21+r belore back-substitution using Eq. 35. 
It is the specification of Gz~+i that must be made properly to implement the OBC. The 
method used in this study is to finite difference Eq. 32 and solve for 171+1/2: 

n+l H 
%+1/2 = $G: - ii;+l ) + ?$+I. 

Expressing the bicliagonal equation in terms of u and 11 

(36) 

then elimininating r$z:,2 from Eqs. 36-37 and solving for ~7,‘: gives 

6:;; = 
Hii;+l + co(F2I - T$+') 

H - coE21 
(38) 

Identifying Gzl+r as u?$:, it is then set from the above expression to initialize the back- 
substitution phase of the Thomas algorithm. 
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